Modulating proximal cell signaling by targeting Btk ameliorates humoral autoimmunity and end-organ disease in murine lupus
نویسندگان
چکیده
INTRODUCTION Systemic lupus erythematosus is a chronic autoimmune disease characterized by an abundance of autoantibodies against nuclear antigens. Bruton's tyrosine kinase (Btk) is a proximal transducer of the BCR signal that allows for B-cell activation and differentiation. Recently, selective inhibition of Btk by PCI-32765 has shown promise in limiting activity of multiple cells types in various models of cancer and autoimmunity. The aim of this study was to determine the effect of Btk inhibition by PCI-32765 on the development of lupus in lupus-prone B6.Sle1 and B6.Sle1.Sle3 mice. METHODS B6.Sle1 or B6.Sle1.Sle3 mice received drinking water containing either the Btk inhibitor PCI-32765 or vehicle for 56 days. Following treatment, mice were examined for clinical and pathological characteristics of lupus. The effect of PCI-32765 on specific cell types was also investigated. RESULTS In this study, we report that Btk inhibition dampens humoral autoimmunity in B6.Sle1 monocongenic mice. Moreover, in B6.Sle1.Sle3 bicongenic mice that are prone to severe lupus, Btk inhibition also dampens humoral and cellular autoimmunity, as well as lupus nephritis. CONCLUSIONS These findings suggest that partial crippling of cell signaling in B cells and antigen presenting cells (APCs) may be a viable alternative to total depletion of these cells as a therapeutic modality for lupus.
منابع مشابه
Bruton’s Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches fo...
متن کاملHighly selective inhibition of Bruton’s tyrosine kinase attenuates skin and brain disease in murine lupus
BACKGROUND Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that affects different end organs, including skin and brain. We and others have previously shown the importance of macrophages in the pathogenesis of cutaneous and neuropsychiatric lupus. Additionally, autoantibodies produced by autoreactive B cells are thought to play a role in both the skin and central nervous syst...
متن کاملTherapeutic Blockade of Immune Complex-Mediated Glomerulonephritis by Highly Selective Inhibition of Bruton’s Tyrosine Kinase
Lupus nephritis (LN) is a potentially dangerous end organ pathology that affects upwards of 60% of lupus patients. Bruton's tyrosine kinase (BTK) is important for B cell development, Fc receptor signaling, and macrophage polarization. In this study, we investigated the effects of a novel, highly selective and potent BTK inhibitor, BI-BTK-1, in an inducible model of LN in which mice receive neph...
متن کاملPathogenesis of kidney disease in systemic lupus erythematosus.
PURPOSE OF REVIEW A combination of systemic autoimmunity and tissue response to immune injury underlie renal involvement in lupus erythematosus. In this review, we discuss recent literature investigating pathogenetic mechanisms of lupus glomerulonephritis. RECENT FINDINGS In lupus glomerulonephritis, glomerular immune complexes were believed to be the primary mediators of renal disease. Recen...
متن کاملB cell OX40L supports T follicular helper cell development and contributes to SLE pathogenesis
OBJECTIVES TNFSF4 (encodes OX40L) is a susceptibility locus for systemic lupus erythematosus (SLE). Risk alleles increase TNFSF4 expression in cell lines, but the mechanism linking this effect to disease is unclear, and the OX40L-expressing cell types mediating the risk are not clearly established. Blockade of OX40L has been demonstrated to reduce disease severity in several models of autoimmun...
متن کامل